Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Combustion and Emissions in a Light-Duty Diesel Engine Using Diesel-Water Emulsion and Diesel-Ethanol Blends

2009-11-02
2009-01-2695
The purpose of the investigation presented here was to compare the effects of fuel composition on combustion parameters, emissions and fuel consumption in engine tests and simulations with five fuels: a Diesel-water emulsion, a Diesel-ethanol blend, a Diesel-ethanol blend with EHN (cetane number improver), a Fischer-Tropsch Diesel and an ultra-low sulfur content Diesel. The engine used in the experiments was a light duty, single cylinder, direct injection, common rail Diesel engine equipped with a cylinder head and piston from a Volvo NED5 engine. In tests with each fuel the engine was operated at two load points (3 bar IMEP and 10 bar IMEP), and a pilot-main fuel injection strategy was applied under both load conditions. Data were also obtained from 3-D CFD simulations, using the KIVA code, to compare to the experimental results and to further analyze the effects of water and ethanol on combustion.
Technical Paper

Adaptive Polynomial Tabulation (APT): A computationally economical strategy for the HCCI engine simulation of complex fuels

2010-04-12
2010-01-1085
The solution mapping method Adaptive Polynomial Tabulation (APT) for complex chemistry is presented. The method has the potential of reducing the computational time required for stochastic reactor model simulations of the HCCI combustion process. In this method the solution of the initial value chemical rate equation system is approximated in real-time with zero, first and second order polynomial expressions. These polynomials are algebraic functions of a progress variable, pressure and total enthalpy. The chemical composition space is divided a priori into block-shaped regions (hypercubes) of the same size. Each hypercube may be divided in real-time into adaptive hypercubes of different sizes. During computations, initial conditions are stored in the adaptive hypercubes. Two concentric Ellipsoids of Accuracy (EOA) are drawn around each stored initial condition.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Modelling a Dual-Fuelled Multi-Cylinder HCCI Engine Using a PDF Based Engine Cycle Simulator

2004-03-08
2004-01-0561
Operating the HCCI engine with dual fuels with a large difference in auto-ignition characteristics (octane number) is one way to control the HCCI operation. The effect of octane number on combustion, emissions and engine performance in a 6 cylinder SCANIA truck engine, fuelled with n-heptane and isooctane, and running in HCCI mode, are investigated numerically and compared with measurements taken from Olsson et al. [SAE 2000-01-2867]. To correctly simulate the HCCI engine operation, we implement a probability density function (PDF) based stochastic reactor model (including detailed chemical kinetics and accounting for inhomogeneities in composition and temperature) coupled with GT-POWER, a 1-D fluid dynamics based engine cycle simulator. Such a coupling proves to be ideal for the understanding of the combustion phenomenon as well as the gas dynamics processes intrinsic to the engine cycle.
Technical Paper

HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel

2004-03-08
2004-01-0935
The possibilities of operating a direct injection Diesel engine in HCCI combustion mode with early injection of conventional Diesel fuel were investigated. In order to properly phase the combustion process in the cycle and to prevent knock, the geometric compression ratio was reduced from 17.0:1 to 13.4:1 or 11.5:1. Further control of the phasing and combustion rate was achieved with high rates of cooled EGR. The engine used for the experiments was a single cylinder version of a modern passenger car type common rail engine with a displacement of 480 cc. An injector with a small included angle was used to prevent interaction of the spray and the cylinder liner. In order to create a homogeneous mixture, the fuel was injected by multiple short injections during the compression stroke. The low knock resistance of the Diesel fuel limited the operating conditions to low loads. Compared to conventional Diesel combustion, the NOx emissions were dramatically reduced.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Diesel Combustion with Reduced Nozzle Orifice Diameter

2001-05-07
2001-01-2010
Future emission legislation will require substantial reductions of NOx and particulate matter (PM) emissions from diesel engines. The combustion and emission formation in a diesel engine is governed mainly by spray formation and mixing. Important parameters governing these are droplet size, distribution, concentration and injection velocity. Smaller orifices are believed to give smaller droplet size, even with reduced injection pressure, which leads to better fuel atomization, faster evaporation and better mixing. In this paper experiments are performed on a single cylinder heavy-duty direct injection diesel engine with three nozzles of different orifice diameters (Ø0.227 mm, Ø0.130 mm, Ø0.090 mm). Two loads (low and medium) and three speeds were investigated. The test results confirmed a substantial reduction in HC and soot emissions at lower loads for the small orifices.
Technical Paper

Influence of Fuel Parameters on Deposit Formation and Emissions in a Direct Injection Stratified Charge SI Engine

2001-05-07
2001-01-2028
This work investigates the influence of fuel parameters on deposit formation and emissions in a four-cylinder direct injection stratified charge (DISC) SI engine. The engine tested is a commercial DISC engine with a wall-guided combustion system. The combustion chamber deposits (CCDs) were analyzed with gas chromatography / mass spectrometry as well as thickness and mass measurements. Intake valve deposits (IVDs) were analyzed for mass, while internal injector deposits were evaluated using spray photography. The CCD build-up was obtained with the CEC1 F-020-A-98 performance test for evaluation of the influence of fuels and additives on IVDs and CCDs in port fuel injected SI engines. The 60 h test is designed to simulate city driving. Four fuels were compared in the study: a base gasoline, with and without a fuel additive, a specially blended high volatility gasoline, and a fuel representing the worst case of European gasolines; neither of the latter two had additives.
Technical Paper

Influence of Wall Properties on the Characteristics of a Gasoline Spray After Wall Impingement

2004-06-08
2004-01-1951
Interest in spray-wall interactions has grown because of the development of direct-injection stratified-charge (DISC) spark ignition (SI) engines. In this type of engine, impingement of the spray on the piston wall often leads to high emissions of unburned hydrocarbons and soot. These emissions have proven to be one of the major drawbacks of the DISC SI engine, so it is important to obtain detailed knowledge about the different processes involved in spray impingement and their effects. In this study, the size and velocity of droplets reflected from a wall were characterized by Phase Doppler Anemometry (PDA). The impinging spray was also visualized using an AVL VisioScope. The experiments were carried out on a real gasoline spray impinging on a wall under simulated engine conditions in a spray chamber. A sensitivity analysis was carried out to investigate the influence of different wall properties and wall temperature, on the impingement and secondary atomization processes.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

2004-06-08
2004-01-1967
A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

The Effects of Leaner Charge and Swirl on Diesel Combustion

2002-05-06
2002-01-1633
Substantial reduction of NOX and particulate emissions from diesel engines will be required by the emission legislation in the future. In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. Parameters of importance are droplet size, droplet distribution, injection velocity, in-cylinder flow (convection and turbulence) and cylinder charge temperature/pressure. The mixing is controlled by convective and turbulent mixing due to in-cylinder charge motion, momentum transfer and turbulence induced by the injection process. The most important processes are known to be the turbulent macro- and micromixing. Smaller nozzle orifices are believed to increase mixing rate, due to smaller droplet size leading to faster evaporation. Dimensional analysis suggests that the turbulent mixing time, τmix, scales with orifice diameter, d.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

Cycle to Cycle Variations: Their Influence on Cycle Resolved Gas Temperature and Unburned Hydrocarbons from a Camless Gasoline Compression Ignition Engine

2002-03-04
2002-01-0110
A single cylinder, naturally aspirated, four-stroke and camless gasoline engine was operated in gasoline compression ignition mode or otherwise known as homogeneous charge compression ignition (HCCI) mode. The valve timing could be adjusted during engine operation, which made it possible to operate the engine on HCCI combustion in the part-load regime of a 5-cylinder 2.4 liter engine. Cycle to cycle variation in cylinder pressure is caused by the shifts in the auto-ignition timing of the air-fuel mixture. These variations during HCCI combustion were found to, be predictable to some extent, in the sense that an early phased combustion follows a later phased one and vice versa. When the engine was operated in spark ignition mode, a late combustion was correlated with a high gas temperature. No such correlation was found when the engine was operated in HCCI mode.
Technical Paper

Modeling of HCCI Combustion Using Adaptive Chemical Kinetics

2002-03-04
2002-01-0426
In this paper an online method for automatically reducing complex chemical mechanisms for simulations of combustion phenomena has been developed. The method is based on the Quasi Steady State Assumption (QSSA). In contrast to previous reduction schemes where chemical species are selected only when they are in steady state throughout the whole process, the present method allows for species to be selected at each operating point separately generating an adaptive chemical kinetics. The method is used for calculations of a natural gas fueled engine operating under Homogenous Charge Compression Ignition (HCCI) conditions. We discuss criteria for selecting steady state species and the influence of these criteria on the results such as concentration profiles and temperature.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

2002-03-04
2002-01-0238
Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Evaluation of HCCI for Future Gasoline Powertrains

2003-03-03
2003-01-0750
This paper describes a two-year programme of research conducted by the authors investigating HCCI in direct injection gasoline engines. Poppet-valved two-stroke cycle operation has been investigated experimentally, using conventional gasoline compression ratios and fuel, and ambient temperature intake air. Extensive combustion and emissions data was gathered from the experimental engine. Computational Fluid Dynamics (CFD) has been used to model HCCI combustion, and the CFD tool validated using experimental data. Based on experience with the two-stroke engine and modelling techniques, a four-stroke engine has been designed and tested. Using this range of tools, practical options for gasoline HCCI engines are evaluated, and a scenario for the market introduction of HCCI is presented.
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
X